Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Vis Exp ; (204)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38465937

RESUMO

The in vitro cytokinesis-block micronucleus (CBMN) assay is a widely used technique in radiobiology research, biological dosimetry, genotoxicity studies, and in vitro radiosensitivity testing. This cytogenetic method is based on the detection of micronuclei in binucleated cells resulting from chromosomal fragments lagging during cell division. Fresh whole blood samples are the most preferred sample type for the CBMN assay. However, the disadvantages of working with fresh blood samples include immediate processing after blood collection and the limited number of repeated analyses that can be performed without extra blood sampling. As the need for fresh blood samples can be logistically challenging, CBMN assay on cryopreserved whole blood samples would be of great advantage, especially in large-scale patient studies. This paper describes a protocol to freeze whole blood samples and to perform the CBMN assay on these frozen blood samples. Blood samples from healthy volunteers have been frozen and thawed at different time points and then, subjected to a modified micronucleus assay protocol. The results demonstrate that this optimized procedure allows the performance of the CBMN assay on frozen blood samples. The described cryopreservation protocol may also be very useful for other cytogenetic assays and a variety of functional assays requiring proliferating lymphocytes.


Assuntos
Citocinese , Radiometria , Humanos , Testes para Micronúcleos/métodos , Divisão Celular , Radiometria/métodos , Linfócitos , Criopreservação
2.
PLoS One ; 19(3): e0300552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489314

RESUMO

Glioblastoma (GB), a highly aggressive primary brain tumor, presents a poor prognosis despite the current standard therapy, including radiotherapy and temozolomide (TMZ) chemotherapy. Tumor microtubes involving connexin 43 (Cx43) contribute to glioma progression and therapy resistance, suggesting Cx43 inhibition as a potential treatment strategy. This research aims to explore the adjuvant potential of tonabersat, a Cx43 gap junction modulator and blood-brain barrier-penetrating compound, in combination with the standard of care for GB. In addition, different administration schedules and timings to optimize tonabersat's therapeutic window are investigated. The F98 Fischer rat model will be utilized to investigate tonabersat's impact in a clinically relevant setting, by incorporating fractionated radiotherapy (three fractions of 9 Gy) and TMZ chemotherapy (29 mg/kg). This study will evaluate tonabersat's impact on tumor growth, survival, and treatment response through advanced imaging (CE T1-w MRI) and histological analysis. Results show extended survival in rats receiving tonabersat with standard care, highlighting its adjuvant potential. Daily tonabersat administration, both preceding and following radiotherapy, emerges as a promising approach for maximizing survival outcomes. The study suggests tonabersat's potential to reduce tumor invasiveness, providing a new avenue for GB treatment. In conclusion, this preclinical investigation highlights tonabersat's potential as an effective adjuvant treatment for GB, and its established safety profile from clinical trials in migraine treatment presents a promising foundation for further exploration.


Assuntos
Benzamidas , Benzopiranos , Neoplasias Encefálicas , Glioblastoma , Ratos , Animais , Glioblastoma/patologia , Conexina 43 , Padrão de Cuidado , Neoplasias Encefálicas/patologia , Temozolomida/uso terapêutico , Ratos Endogâmicos F344 , Antineoplásicos Alquilantes/uso terapêutico
3.
Biomater Adv ; 159: 213827, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490018

RESUMO

Chronic suppurative otitis media (CSOM) is often associated with permanent tympanic membrane (TM) perforation and conductive hearing loss. The current clinical gold standard, using autografts and allografts, suffers from several drawbacks. Artificial replacement materials can help to overcome these drawbacks. Therefore, scaffolds fabricated through digital light processing (DLP) were herein created to support TM regeneration. Various UV-curable printing inks, including gelatin methacryloyl (GelMA), gelatin-norbornene-norbornene (GelNBNB) (crosslinked with thiolated gelatin (GelSH)) and alkene-functionalized poly-ε-caprolactone (E-PCL) (crosslinked with pentaerythritol tetrakis(3-mercaptopropionate) (PETA4SH)) were optimized regarding photo-initiator (PI) and photo-absorber (PA) concentrations through viscosity characterization, photo-rheology and the establishment of working curves for DLP. Our material platform enabled the development of constructs with a range of mechanical properties (plateau storage modulus varying between 15 and 119 kPa). Excellent network connectivity for the GelNBNB and E-PCL constructs was demonstrated (gel fractions >95 %) whereas a post-crosslinking step was required for the GelMA constructs. All samples showed excellent biocompatibility (viability >93 % and metabolic activity >88 %). Finally, in vivo and ex vivo assessments, including histology, vibration and deformation responses measured through laser doppler vibrometry and digital image correlation respectively, were performed to investigate the effects of the scaffolds on the anatomical and physiological regeneration of acute TM perforations in rabbits. The data showed that the most efficient healing with the best functional quality was obtained when both mechanical (obtained with the PCL-based resin) and biological (obtained with the gelatin-based resins) material properties were taken into account.


Assuntos
Perfuração da Membrana Timpânica , Membrana Timpânica , Animais , Coelhos , Gelatina , Sinais (Psicologia) , Perfuração da Membrana Timpânica/cirurgia , Regeneração , Norbornanos
4.
PLoS One ; 19(1): e0296360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165944

RESUMO

Glioblastoma (GB) is the most common and malignant primary brain tumor in adults with a median survival of 12-15 months. The F98 Fischer rat model is one of the most frequently used animal models for GB studies. However, suboptimal inoculation leads to extra-axial and extracranial tumor formations, affecting its translational value. We aim to improve the F98 rat model by incorporating MRI-guided (hypo)fractionated radiotherapy (3 x 9 Gy) and concomitant temozolomide chemotherapy, mimicking the current standard of care. To minimize undesired tumor growth, we reduced the number of inoculated cells (starting from 20 000 to 500 F98 cells), slowed the withdrawal of the syringe post-inoculation, and irradiated the inoculation track separately. Our results reveal that reducing the number of F98 GB cells correlates with a diminished risk of extra-axial and extracranial tumor growth. However, this introduces higher variability in days until GB confirmation and uniformity in GB growth. To strike a balance, the model inoculated with 5000 F98 cells displayed the best results and was chosen as the most favorable. In conclusion, our improved model offers enhanced translational potential, paving the way for more accurate and reliable assessments of novel adjuvant therapeutic approaches for GB.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Ratos , Animais , Glioblastoma/patologia , Padrão de Cuidado , Ratos Endogâmicos F344 , Neoplasias Encefálicas/patologia , Dosagem Radioterapêutica
5.
Int J Radiat Biol ; 100(2): 236-247, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37819795

RESUMO

Introduction: In radiology, low X-ray energies (<140 keV) are used to obtain an optimal image while in radiotherapy, higher X-ray energies (MeV) are used to eradicate tumor tissue. In radiation research, both these X-ray energies being used to extrapolate in vitro research to clinical practice. However, the energy deposition of X-rays depends on their energy spectrum, which might lead to changes in biological response. Therefore, this study compared the DNA damage response (DDR) in peripheral blood lymphocytes (PBLs) exposed to X-rays with varying beam quality, mean photon energy (MPE) and dose rate.Methods: The DDR was evaluated in peripheral blood lymphocytes (PBLs) by the É£-H2AX foci assay, the cytokinesis-block micronucleus assay and an SYTOX-based cell death assay, combined with specific cell death inhibitors. Cell cultures were irradiated with a 220 kV X-ray research cabinet (SARRP, X-Strahl) or a 6 MV X-ray linear accelerator (Elekta Synergy). Three main physical parameters were investigated: beam quality (V), MPE (eV) and dose rate (Gy/min). Additional copper (Cu) filtration caused variation in the MPE (78 keV, 94 keV, 118 keV) at SARRP; dose rates were varied by adjusting tube current for 220 kV X-rays (0.33-3 Gy/min) or water-phantom depth in the 6 MV set-up (3-6 Gy/min).Results: The induction of chromosomal damage and initial (30 min) DNA double-stranded breaks (DSBs) were significantly higher for 220 kV X-rays compared to 6 MV X-rays, while cell death induction was similar. Specific cell death inhibitors for apoptosis, necroptosis and ferroptosis were not capable of blocking cell death after irradiation using low or high-energy X-rays. Additional Cu filtration increased the MPE, which significantly decreased the amount of chromosomal damage and DSBs. Within the tested ranges no specific effects of dose rate variation were observed.Conclusion: The DDR in PBLs is influenced by the beam quality and MPE. This study reinforces the need for consideration and inclusion of all physical parameters in radiation-related studies.


Assuntos
Dano ao DNA , Linfócitos , Raios X , Radiografia , Linfócitos/efeitos da radiação , Reparo do DNA , Relação Dose-Resposta à Radiação
6.
Biomater Res ; 27(1): 104, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853495

RESUMO

BACKGROUND: Long-term drug evaluation heavily relies upon rodent models. Drug discovery methods to reduce animal models in oncology may include three-dimensional (3D) cellular systems that take into account tumor microenvironment (TME) cell types and biomechanical properties. METHODS: In this study we reconstructed a 3D tumor using an elastic polymer (acrylate-endcapped urethane-based poly(ethylene glycol) (AUPPEG)) with clinical relevant stiffness. Single cell suspensions from low-grade serous ovarian cancer (LGSOC) patient-derived early passage cultures of cancer cells and cancer-associated fibroblasts (CAF) embedded in a collagen gel were introduced to the AUPPEG scaffold. After self-organization in to a 3D tumor, this model was evaluated by a long-term (> 40 days) exposure to a drug combination of MEK and HSP90 inhibitors. The drug-response results from this long-term in vitro model are compared with drug responses in an orthotopic LGSOC xenograft mouse model. RESULTS: The in vitro 3D scaffold LGSOC model mimics the growth ratio and spatial organization of the LGSOC. The AUPPEG scaffold approach allows to test new targeted treatments and monitor long-term drug responses. The results correlate with those of the orthotopic LGSOC xenograft mouse model. CONCLUSIONS: The mechanically-tunable scaffolds colonized by a three-dimensional LGSOC allow long-term drug evaluation and can be considered as a valid alternative to reduce, replace and refine animal models in drug discovery.

7.
Sci Rep ; 13(1): 16995, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813904

RESUMO

Proton therapy is of great interest to pediatric cancer patients because of its optimal depth dose distribution. In view of healthy tissue damage and the increased risk of secondary cancers, we investigated DNA damage induction and repair of radiosensitive hematopoietic stem and progenitor cells (HSPCs) exposed to therapeutic proton and photon irradiation due to their role in radiation-induced leukemia. Human CD34+ HSPCs were exposed to 6 MV X-rays, mid- and distal spread-out Bragg peak (SOBP) protons at doses ranging from 0.5 to 2 Gy. Persistent chromosomal damage was assessed with the micronucleus assay, while DNA damage induction and repair were analyzed with the γ-H2AX foci assay. No differences were found in induction and disappearance of γ-H2AX foci between 6 MV X-rays, mid- and distal SOBP protons at 1 Gy. A significantly higher number of micronuclei was found for distal SOBP protons compared to 6 MV X-rays and mid- SOBP protons at 0.5 and 1 Gy, while no significant differences in micronuclei were found at 2 Gy. In HSPCs, mid-SOBP protons are as damaging as conventional X-rays. Distal SOBP protons showed a higher number of micronuclei in HSPCs depending on the radiation dose, indicating possible changes of the in vivo biological response.


Assuntos
Terapia com Prótons , Criança , Humanos , Terapia com Prótons/efeitos adversos , Prótons , Relação Dose-Resposta à Radiação , Eficiência Biológica Relativa , Dano ao DNA , Células-Tronco Hematopoéticas , Reparo do DNA
9.
Cytogenet Genome Res ; 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071978

RESUMO

In the case of a radiological or nuclear event, biological dosimetry can be an important tool to support clinical decision-making. During a nuclear event, individuals might be exposed to a mixed field of neutrons and photons. The composition of the field and the neutron energy spectrum influence the degree of damage to the chromosomes. During the transatlantic BALANCE project, an exposure similar to a Hiroshima-like device at a distance of 1.5 km from the epicenter was simulated and biological dosimetry based on dicentric chromosomes was performed to evaluate the participants ability to discover unknown doses and to test the influence of differences in neutron spectra. In a first step, calibration curves were established by irradiating blood samples with 5 doses in the range of 0 Gy to 4 Gy at two different facilities in Germany (PTB) and USA (CINF). The samples were sent to eight participating laboratories from the RENEB network and dicentric chromosomes were scored by each participant. Next, blood samples were irradiated with 4 blind doses in each of the two facilities and sent to the participants to provide dose estimates based on the established calibration curves. Manual and semi-automatic scoring of dicentric chromosomes were evaluated for their applicability to neutron exposures. Moreover, the biological effectiveness of the neutrons from the two irradiation facilities was compared. The calibration curves from samples irradiated at CINF showed a 1.4 times higher biological effectiveness compared to samples irradiated at PTB. For manual scoring of dicentric chromosomes, the doses of the test samples were mostly successfully resolved based on the calibration curves established during the project. For semi-automatic scoring, the dose estimation for the test samples was less successful. Doses >2 Gy in the calibration curves revealed non-linear associations between dose and dispersion index of the dicentric counts, especially for manual scoring. The differences in the biological effectiveness between the irradiation facilities suggested that the neutron energy spectrum can have a strong impact on the dicentric counts.

10.
Cell Death Dis ; 13(12): 1062, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36539408

RESUMO

Gliomas, the most frequent type of primary tumor of the central nervous system in adults, results in significant morbidity and mortality. Despite the development of novel, complex, multidisciplinary, and targeted therapies, glioma therapy has not progressed much over the last decades. Therefore, there is an urgent need to develop novel patient-adjusted immunotherapies that actively stimulate antitumor T cells, generate long-term memory, and result in significant clinical benefits. This work aimed to investigate the efficacy and molecular mechanism of dendritic cell (DC) vaccines loaded with glioma cells undergoing immunogenic cell death (ICD) induced by photosens-based photodynamic therapy (PS-PDT) and to identify reliable prognostic gene signatures for predicting the overall survival of patients. Analysis of the transcriptional program of the ICD-based DC vaccine led to the identification of robust induction of Th17 signature when used as a vaccine. These DCs demonstrate retinoic acid receptor-related orphan receptor-γt dependent efficacy in an orthotopic mouse model. Moreover, comparative analysis of the transcriptome program of the ICD-based DC vaccine with transcriptome data from the TCGA-LGG dataset identified a four-gene signature (CFH, GALNT3, SMC4, VAV3) associated with overall survival of glioma patients. This model was validated on overall survival of CGGA-LGG, TCGA-GBM, and CGGA-GBM datasets to determine whether it has a similar prognostic value. To that end, the sensitivity and specificity of the prognostic model for predicting overall survival were evaluated by calculating the area under the curve of the time-dependent receiver operating characteristic curve. The values of area under the curve for TCGA-LGG, CGGA-LGG, TCGA-GBM, and CGGA-GBM for predicting five-year survival rates were, respectively, 0.75, 0.73, 0.9, and 0.69. These data open attractive prospects for improving glioma therapy by employing ICD and PS-PDT-based DC vaccines to induce Th17 immunity and to use this prognostic model to predict the overall survival of glioma patients.


Assuntos
Neoplasias Encefálicas , Glioma , Fotoquimioterapia , Animais , Camundongos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/terapia , Glioma/patologia , Transcriptoma , Sistema Nervoso Central/patologia , Proteínas Cromossômicas não Histona/genética
11.
Sci Rep ; 12(1): 15744, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130980

RESUMO

A wide variety of 18F-labeled PSMA-targeting PET radiotracers have been developed, including [18F]AlF-PSMA-11. As there is only limited data on the comparison with other 18F-labeled PSMA PET tracers, a comparative preclinical study between [18F]AlF-PSMA-11 and [18F]PSMA-1007 was conducted. Mice with varying PSMA expressing tumors (C4-2, 22Rv1 and PC-3, each n = 5) underwent two PET/CT scans with both [18F]AlF-PSMA-11 and [18F]PSMA-1007. Ten additional mice bearing C4-2 xenografts were subjected to ex vivo biodistribution with either [18F]AlF-PSMA-11 (n = 5) or [18F]PSMA-1007 (n = 5). Absolute SUVmean and SUVmax values were significantly higher for [18F]PSMA-1007 scans in both C4-2 tumors (p < 0.01) and 22Rv1 tumors (p < 0.01). In C4-2 xenograft bearing mice, the tumor-to-organ ratios did not significantly differ between [18F]AlF-PSMA-11 and [18F]PSMA-1007 for liver, muscle, blood and salivary glands (p > 0.05). However, in 22Rv1 xenograft bearing mice, all tumor-to-organ ratios were higher for [18F]AlF-PSMA-11 (p < 0.01). In healthy organs, [18F]PSMA-1007 uptake was higher in the liver, gallbladder, small intestines and glands. Biodistribution data confirmed the increased uptake in the heart, small intestines and liver with [18F]PSMA-1007. Absolute tumor uptake was higher with [18F]PSMA-1007 in all tumors. Tumor-to-organ ratios did not differ significantly in high PSMA expressing tumors, but were higher for [18F]AlF-PSMA-11 in low PSMA expressing tumors. Furthermore, [18F]PSMA-1007 showed higher uptake in healthy organs.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos , Animais , Humanos , Camundongos , Niacinamida/análogos & derivados , Oligopeptídeos , Tomografia por Emissão de Pósitrons , Distribuição Tecidual
12.
Sci Rep ; 12(1): 10322, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725896

RESUMO

Recent research on normal human tissues identified omnipresent clones of cells, driven by somatic mutations known to be responsible for carcinogenesis (e.g., in TP53 or NOTCH1). These new insights are fundamentally changing current tumor evolution models, with broad oncological implications. Most studies are based on surgical remnant tissues, which are not available for many organs and rarely in a pan-organ setting (multiple organs from the same individual). Here, we describe an approach based on clinically annotated post-mortem tissues, derived from whole-body donors that are routinely used for educational purposes at human anatomy units. We validated this post-mortem approach using UV-exposed and unexposed epidermal skin tissues and confirm the presence of positively selected NOTCH1/2-, TP53- and FAT1-driven clones. No selection signals were detected in a set of immune genes or housekeeping genes. Additionally, we provide the first evidence for smoking-induced clonal changes in oral epithelia, likely underlying the origin of head and neck carcinogenesis. In conclusion, the whole-body donor-based approach provides a nearly unlimited healthy tissue resource to study mutational clonality and gain fundamental mutagenic insights in the presumed earliest stages of tumor evolution.


Assuntos
Neoplasias , Carcinogênese/genética , Células Clonais/patologia , Humanos , Mutagênese , Mutação , Neoplasias/genética , Neoplasias/patologia
13.
Sci Rep ; 12(1): 7687, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538107

RESUMO

Even though a detailed understanding of the proliferative characteristics of T lymphocytes is imperative in many research fields, prior studies have never reached a consensus on these characteristics, and on the corresponding cell cycle kinetics specifically. In this study, the general proliferative response of human T lymphocytes to phytohaemagglutinin (PHA) stimulation was characterized using a carboxyfluorescein succinimidyl ester-based flow cytometric assay. We were able to determine when PHA-stimulated T lymphocytes complete their first division, the proportion of cells that initiate proliferation, the subsequent division rate of the cells, and the impact of irradiation on these proliferative properties. Next, we accurately visualized the cell cycle progression of dividing T lymphocytes cultured in whole blood using an adapted 5-ethynyl-2'-deoxyuridine pulse-chase method. Furthermore, through multiple downstream analysis methods, we were able to make an estimation of the corresponding cell cycle kinetics. We also visualized the impact of X-rays on the progression of the cells through the cell cycle. Our results showed dose-dependent G2 arrest after exposure to irradiation, and a corresponding delay in G1 phase-entry of the cells. In conclusion, utilizing various flow cytometric assays, we provided valuable information on T lymphocyte proliferation characteristics starting from first division to fully dividing cells.


Assuntos
Ativação Linfocitária , Linfócitos T , Ciclo Celular , Humanos , Cinética , Linfócitos/metabolismo , Fito-Hemaglutininas/metabolismo , Fito-Hemaglutininas/farmacologia
14.
Sci Rep ; 11(1): 22623, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34799653

RESUMO

This two-part preclinical study aims to evaluate prostate specific membrane antigen (PSMA) as a valuable target for expression-based imaging applications and to determine changes in target binding in function of varying apparent molar activities (MAapp) of [18F]AlF-PSMA-11. For the evaluation of PSMA expression levels, male NOD/SCID mice bearing prostate cancer (PCa) xenografts of C4-2 (PSMA+++), 22Rv1 (PSMA+) and PC-3 (PSMA-) were administered [18F]AlF-PSMA-11 with a medium MAapp (20.24 ± 3.22 MBq/nmol). SUVmean and SUVmax values were respectively 3.22 and 3.17 times higher for the high versus low PSMA expressing tumors (p < 0.0001). To evaluate the effect of varying MAapp, C4-2 and 22Rv1 xenograft bearing mice underwent additional [18F]AlF-PSMA-11 imaging with a high (211.2 ± 38.9 MBq/nmol) and/or low MAapp (1.92 ± 0.27 MBq/nmol). SUV values showed a significantly increasing trend with higher MAapp. Significant changes were found for SUVmean and SUVmax between the high versus low MAapp and medium versus low MAapp (both p < 0.05), but not between the high versus medium MAapp (p = 0.055 and 0.25, respectively). The effect of varying MAapp was more pronounced in low expressing tumors and PSMA expressing tissues (e.g. salivary glands and kidneys). Overall, administration of a high MAapp increases the detection of low expression tumors while also increasing uptake in PSMA expressing tissues, possibly leading to false positive findings. In radioligand therapy, a medium MAapp could reduce radiation exposure to dose-limiting organs with only limited effect on radionuclide accumulation in the tumor.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glutamato Carboxipeptidase II/biossíntese , Glutaratos/farmacocinética , Glicoproteínas de Membrana/biossíntese , Ácidos Fosfínicos/farmacocinética , Neoplasias da Próstata/metabolismo , Complexo de Endopeptidases do Proteassoma/biossíntese , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/patologia , Ligação Proteica , Compostos Radiofarmacêuticos , Distribuição Tecidual
15.
Front Immunol ; 12: 674226, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220820

RESUMO

Severe Combined Immune Deficiency (SCID) is a primary deficiency of the immune system in which opportunistic and recurring infections are often fatal during neonatal or infant life. SCID is caused by an increasing number of genetic defects that induce an abrogation of T lymphocyte development or function in which B and NK cells might be affected as well. Because of the increased availability and usage of next-generation sequencing (NGS), many novel variants in SCID genes are being identified and cause a heterogeneous disease spectrum. However, the molecular and functional implications of these new variants, of which some are non-coding, are often not characterized in detail. Using targeted NGS, we identified a novel homozygous c.465-1G>C splice acceptor site variant in the DCLRE1C gene in a T-B-NK+ SCID patient and fully characterized the molecular and functional impact. By performing a minigene splicing reporter assay, we revealed deregulated splicing of the DCLRE1C transcript since a cryptic splice acceptor in exon 7 was employed. This induced a frameshift and the generation of a p.Arg155Serfs*15 premature termination codon (PTC) within all DCLRE1C splice variants, resulting in the absence of full-length ARTEMIS protein. Consistently, a V(D)J recombination assay and a G0 micronucleus assay demonstrated the inability of the predicted mutant ARTEMIS protein to perform V(D)J recombination and DNA damage repair, respectively. Together, these experiments molecularly and functionally clarify how a newly identified c.465-1G>C variant in the DCLRE1C gene is responsible for inducing SCID. In a clinical context, this demonstrates how the experimental validation of new gene variants, that are identified by NGS, can facilitate the diagnosis of SCID which can be vital for implementing appropriate therapies.


Assuntos
Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Imunodeficiência Combinada Severa/genética , Recombinação V(D)J/genética , Feminino , Humanos , Lactente , Mutação , Linhagem , Splicing de RNA
16.
Int J Radiat Biol ; 97(9): 1252-1260, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34138661

RESUMO

PURPOSE: The cytokinesis-block micronucleus (MN) assay is a widely used technique in basic radiobiology research, human biomonitoring studies and in vitro radiosensitivity testing. Fresh whole blood cultures are commonly used for these purposes, but immediate processing of fresh samples can be logistically challenging. Therefore, we aimed at establishing a protocol for the MN assay on cryopreserved whole blood, followed by a thorough evaluation of the reliability of this assay for use in radiosensitivity assessment in patients. MATERIALS AND METHODS: Whole blood samples of 20 healthy donors and 4 patients with a primary immunodeficiency disease (PID) were collected to compare the results obtained with the MN assay performed on fresh versus cryopreserved whole blood samples. MN yields were scored after irradiation with 220 kV X-rays (dose rate 3 Gy/min), with doses ranging from 0.5-2 Gy. RESULTS: The application of the MN assay on cryopreserved blood samples was successful in all analyzed samples. The radiation-induced MN and NDI scores in fresh and cryopreserved blood cultures were found to be similar. Acceptable inter-individual and intra-individual variabilities in MN yields were observed. Repeated analysis of cryopreserved blood cultures originating from the same blood sample, thawed at different time points, revealed that MN values remain stable for cryopreservation periods up to one year. Finally, radiosensitive patients were successfully identified using the MN assay on cryopreserved samples. CONCLUSIONS: To our knowledge, this study is the first report of the successful use of cryopreserved whole blood samples for application of the MN assay. The data presented here demonstrate that the MN assay performed on cryopreserved whole blood is reliable for radiosensitivity testing. Our results also support its wider use in epidemiological, biomonitoring and genotoxicity studies. The presented method of cryopreservation of blood samples might also benefit other assays.


Assuntos
Células Sanguíneas/citologia , Células Sanguíneas/efeitos da radiação , Criopreservação , Citocinese/genética , Citocinese/efeitos da radiação , Feminino , Raios gama/efeitos adversos , Humanos , Masculino , Testes para Micronúcleos , Tolerância a Radiação
17.
Int J Radiat Biol ; 97(9): 1181-1198, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34138666

RESUMO

PURPOSE: Biological and/or physical assays for retrospective dosimetry are valuable tools to recover the exposure situation and to aid medical decision making. To further validate and improve such biological and physical assays, in 2019, EURADOS Working Group 10 and RENEB performed a field exercise in Lund, Sweden, to simulate various real-life exposure scenarios. MATERIALS AND METHODS: For the dicentric chromosome assay (DCA), blood tubes were located at anthropomorphic phantoms positioned in different geometries and were irradiated with a 1.36 TBq 192Ir-source. For each exposure condition, dose estimates were provided by at least one laboratory and for four conditions by 17 participating RENEB laboratories. Three radio-photoluminescence glass dosimeters were placed at each tube to assess reference doses. RESULTS: The DCA results were homogeneous between participants and matched well with the reference doses (≥95% of estimates within ±0.5 Gy of the reference). For samples close to the source systematic underestimation could be corrected by accounting for exposure time. Heterogeneity within and between tubes was detected for reference doses as well as for DCA doses estimates. CONCLUSIONS: The participants were able to successfully estimate the doses and to provide important information on the exposure scenarios under conditions closely resembling a real-life situation.


Assuntos
Cromossomos Humanos/genética , Cromossomos Humanos/efeitos da radiação , Radiometria , Aberrações Cromossômicas/efeitos da radiação , Humanos , Exposição à Radiação/análise , Estudos Retrospectivos
18.
Int J Radiat Biol ; 97(7): 888-905, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33970757

RESUMO

PURPOSE: In case of a mass-casualty radiological event, there would be a need for networking to overcome surge limitations and to quickly obtain homogeneous results (reported aberration frequencies or estimated doses) among biodosimetry laboratories. These results must be consistent within such network. Inter-laboratory comparisons (ILCs) are widely accepted to achieve this homogeneity. At the European level, a great effort has been made to harmonize biological dosimetry laboratories, notably during the MULTIBIODOSE and RENEB projects. In order to continue the harmonization efforts, the RENEB consortium launched this intercomparison which is larger than the RENEB network, as it involves 38 laboratories from 21 countries. In this ILC all steps of the process were monitored, from blood shipment to dose estimation. This exercise also aimed to evaluate the statistical tools used to compare laboratory performance. MATERIALS AND METHODS: Blood samples were irradiated at three different doses, 1.8, 0.4 and 0 Gy (samples A, C and B) with 4-MV X-rays at 0.5 Gy min-1, and sent to the participant laboratories. Each laboratory was requested to blindly analyze 500 cells per sample and to report the observed frequency of dicentric chromosomes per metaphase and the corresponding estimated dose. RESULTS: This ILC demonstrates that blood samples can be successfully distributed among laboratories worldwide to perform biological dosimetry in case of a mass casualty event. Having achieved a substantial harmonization in multiple areas among the RENEB laboratories issues were identified with the available statistical tools, which are not capable to advantageously exploit the richness of results of a large ILCs. Even though Z- and U-tests are accepted methods for biodosimetry ILCs, setting the number of analyzed metaphases to 500 and establishing a tests' common threshold for all studied doses is inappropriate for evaluating laboratory performance. Another problem highlighted by this ILC is the issue of the dose-effect curve diversity. It clearly appears that, despite the initial advantage of including the scoring specificities of each laboratory, the lack of defined criteria for assessing the robustness of each laboratory's curve is a disadvantage for the 'one curve per laboratory' model. CONCLUSIONS: Based on our study, it seems relevant to develop tools better adapted to the collection and processing of results produced by the participant laboratories. We are confident that, after an initial harmonization phase reached by the RENEB laboratories, a new step toward a better optimization of the laboratory networks in biological dosimetry and associated ILC is on the way.


Assuntos
Laboratórios , Radiometria , Aberrações Cromossômicas/efeitos da radiação , Humanos , Exposição à Radiação , Reprodutibilidade dos Testes
19.
DNA Repair (Amst) ; 97: 103023, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33341473

RESUMO

Double strand break (DSB) repair through Homologous Recombination (HR) is essential in maintaining genomic stability of the cell. Mutations in the HR pathway confer an increased risk for breast, ovarian, pancreatic and prostate cancer. PARP inhibitors (PARPi) are compounds that specifically target tumours deficient in HR. Novel PARPi are constantly being developed, but research is still heavily focussed on in vitro data, with mouse xenografts only being used in late stages of development. There is a need for assays that can: 1) provide in vivo data, 2) early in the development process of novel PARPi, 3) provide fast results and 4) at an affordable cost. Here we propose a combination of in vivo zebrafish assays to accurately quantify PARP inhibitor efficacy. We showed that PARPi display functional effects in zebrafish, generally correlating with their PARP trapping capacities. Furthermore, we displayed how olaparib mediated radiosensitization is conserved in our zebrafish model. These assays could aid the development of novel PARPi by providing early in vivo data. In addition, using zebrafish allows for high-throughput testing of combination therapies in search of novel treatment strategies.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Modelos Animais , Mutação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Reparo de DNA por Recombinação , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Antineoplásicos/farmacologia , Proteína BRCA2/genética , DNA/metabolismo , DNA/efeitos da radiação , Ftalazinas/farmacologia , Piperazinas/farmacologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
20.
Sci Rep ; 10(1): 21068, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273603

RESUMO

Recently, a 18F-labeled derivative of the widely used 68Ga-PSMA-11 was developed for PET imaging of prostate cancer. Although 18F-PSMA-11 has already been evaluated in a Phase I and Phase II clinical trial, preclinical evaluation of this radiotracer is important for further understanding its dynamic behavior. Saturation binding experiments were conducted by incubation of LNCaP cells with 18F-PSMA-11 or 68Ga-PSMA-11 for 1 h, followed by determination of the specific and aspecific binding. Mice bearing LNCaP or PC-3 xenografts each received ± 3.7 MBq 18F-PSMA-11 and 68Ga-PSMA-11 followed by dynamic acquisition of 2.5 h as well as ± 15 MBq 18F-FDG followed by static acquisition at 1 h post injection (p.i.). Uptake was evaluated by comparison of uptake parameters (SUVmean, SUVmax, TBRmean and TBRmax). Mice underwent ex vivo biodistribution where 18F-PSMA-11 activity was measures in excretory organs (kidneys, bladder and liver) as well as bone fragments (femur, humerus, sternum and skull) to evaluate bone uptake. The dissociation constant (Kd) of 18F-PSMA-11 and 68Ga-PSMA-11 was 2.95 ± 0.87 nM and 0.49 ± 0.20 nM, respectively. Uptake parameters were significantly higher in LNCaP compared to PC-3 xenografts for both 18F-PSMA-11 and 68Ga-PSMA-11, while no difference was found for 18F-FDG uptake (except for SUVmax). Tumor uptake of 18F-PSMA-11 showed a similar trend over time as 68Ga-PSMA-11, although all uptake parameter curves of the latter were considerably lower. When comparing early (60 min p.i.) to delayed (150 min p.i.) imaging for both radiotracers individually, TBRmean and TBRmax were significantly higher at the later timepoint, as well as the SUVmax of 68Ga-PSMA-11. The highest %ID/g was determined in the kidneys (94.0 ± 13.6%ID/g 1 h p.i.) and the bladder (6.48 ± 2.18%ID/g 1 h p.i.). No significant increase in bone uptake was seen between 1 and 2 h p.i. Both radiotracers showed high affinity for the PSMA receptor. Over time, all uptake parameters were higher for 18F-PSMA-11 compared to 68Ga-PSMA-11. Delayed imaging with the latter may improve tumor visualization, while no additional benefits could be found for late 18F-PSMA-11 imaging. Ex vivo biodistribution demonstrated fast renal clearance of 18F-PSMA-11 as well as no significant increase in bone uptake.


Assuntos
Ácido Edético/análogos & derivados , Glutaratos/química , Oligopeptídeos/química , Ácidos Fosfínicos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Ácido Edético/química , Fluordesoxiglucose F18/química , Isótopos de Gálio , Radioisótopos de Gálio , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...